Driving Saturn’s magnetospheric periodicities from the upper atmosphere/ionosphere
نویسندگان
چکیده
[1] Saturn’s magnetospheric structure and the intensity of radio frequency emissions from its immediate surroundings are modulated at close to the planet’s rotation period. Analogous rotation-modulated variations at Jupiter are readily interpreted as effects of the non-axisymmetric intrinsic magnetic field. At Saturn, to the contrary, the high level of axial symmetry in the intrinsic field suggests that the periodicity is not internally imposed. A number of mechanisms have been proposed to account for the observations. Each model explains a subset of the observations in a qualitative manner, but no quantitative models yet exist. Here, using a magnetohydrodynamic simulation, we investigate the magnetospheric perturbations that arise from a localized vortical flow structure in the ionosphere near 70 S-latitude that rotates at roughly the rate of planetary rotation. The model reproduces nearly quantitatively a host of observed magnetospheric periodicities associated with the period of the dominant (southern) radio frequency emissions during the Cassini epoch including rotating, quasi-uniform magnetic perturbations in the equatorial plane, rotating mass density perturbations, periodic plasmoid releases that we associate with observed bursts of energetic neutral atoms (ENAs), periodic oscillations of magnetospheric boundaries, current sheet flapping, and periodic modulation of the field-aligned currents linked to Saturn’s kilometric radiation (SKR). The model is not unique but is representative of a class of models in which asymmetric flows in the (as yet unmeasured) upper atmosphere couple to the ionosphere and generate currents that flow into the magnetosphere. It can be extended to include the second periodicity that has been associated with SKR emissions in the northern hemisphere.
منابع مشابه
Driving Saturn’s magnetospheric periodicities from the upper atmosphere/ionosphere: Magnetotail response to dual sources
[1] Despite the high degree of axial symmetry of Saturn’s internal magnetic field, rotationassociated periodicities are evident in Saturn’s electromagnetic radiation, its magnetic perturbations and its particle populations. Although close to the mean rotation period of the cloud tops, the electromagnetic period drifts slightly over a time scale of years and, at high latitudes, differs for sourc...
متن کاملTitan’s thermospheric response to various plasma environments
[1] The Cassini‐Huygensmission has been observing Titan since October 2004, resulting in over 70 targeted flybys. Titan’s thermosphere is sampled by the Ion and Neutral Mass Spectrometer (INMS) during several of these flybys. The measured upper atmospheric density varies significantly from pass to pass. In order to quantify the processes controlling this variability, we calculate the nitrogen s...
متن کاملMagnetospheric and Plasma Science with Cassini-huygens
Magnetospheric and plasma science studies at Saturn offer a unique opportunity to explore in-depth two types of magnetospheres. These are an ‘induced’ magnetosphere generated by the interaction of Titan with the surrounding plasma flow and Saturn’s ‘intrinsic’ magnetosphere, the magnetic cavity Saturn’s planetary magnetic field creates inside the solar wind flow. These two objects will be explo...
متن کاملThe structure and time variability of the ring atmosphere and ionosphere
0019-1035/$ see front matter 2009 Elsevier Inc. A doi:10.1016/j.icarus.2009.05.019 * Corresponding author. E-mail address: [email protected] (W.-L. The saturnian system is subject to constant bombardment by interplanetary meteoroids and irradiation by solar UV photons. Both effects release neutral molecules from the icy ring particles either in the form of impact water vapor or gas emiss...
متن کاملRecurrent energization of plasma in the midnight-to-dawn quadrant of Saturn's magnetosphere, and its relationship to auroral UV and radio emissions
We demonstrate that under some magnetospheric conditions protons and oxygen ions are accelerated once per Saturn magnetosphere rotation, at a preferred local time between midnight and dawn. Although enhancements in energetic neutral atom (ENA) emission may in general occur at any local time and at any time in a Saturn rotation, those enhancements that exhibit a recurrence at a period very close...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012